모바일 메뉴 닫기
 

연구

Research & Laboratory

제목
[BK21] 초청 세미나 [6/7] Information Leaks in Classical and Quantum Computers
작성일
2022.06.07
작성자
전기전자공학부
게시글 내용


아래와 같이 초청 세미나를 개최하오니 많은 참여 부탁드립니다.


◎ 일시: 2022년 6월 7일(화) 오후 2시


◎ 장소: B039


◎ 제목: Information Leaks in Classical and Quantum Computers


◎ 강연자: Jakub Szefer, Associate Professor, Dept. of Electrical Engineering, Yale University

◎ 초청자: 전기전자공학과 김한준 교수


◎ 초록: 

 -  Information leaks pose a threat to computer security as they may be abused to leak sensitive information from different programs and users sharing a computer. Information leaks at the architecture and the hardware levels occur due to the operation and physical behavior of the computer hardware; behavior which often may be invisible at the software level. While the behavior is invisible in many cases, it results in changes, such as timing, that can be measured and used to leak information in classical computers. While information leaks have been well studied in classical computers, our recent work shows they also occur in quantum computers. This talk will then aim to provide introduction to certain architecture and hardware based information leaks in both classical and quantum computers. Considering classical computers, the talk will focus on cache and translation look-aside buffer based information leaks which occur due to the share caches and translation look-aside buffers. Especially, timing of memory operations in classical computers is affected by whether and where the data is located in the caches. Measuring of memory access timing can be abused by malicious attackers to infer information about other users or programs sharing the caches, for example. Considering quantum computers, the talk will focus on recently discovered information leaks through reset gates in IBM superconducting qubit machines. Especially, reset gates used to reset the state of qubits are observed not to behave ideally, allowing for some information to be leaked across the resets. One of the goals of the presentation is to make researchers, and every day users, to become aware of the different architecture and hardware level security threats and to think about how to design today’s and tomorrow’s computer systems to be resilient to such security threats.